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Abstract

Road vehicles will vastly change in the coming years, due to the rise in autonomous vehicle tech-
nologies, sustainable forms of power, and better safety systems. This paper explores the improvements
in traffic flow and safety that could be led by the shift to autonomously driven vehicles. Utilising
VEHICLE-TO-VEHICLE (V2V) COMMUNICATION, it is possible to greatly reduce any time delays
that arise due to human reaction times, or actuation delays. This model also takes into account any
ACCELERATION SATURATIONS due to vehicle limitations. A model is developed that can work in
an environment of both human-driven and connected autonomous vehicles (CAVs) - this lets us see
how effective V2V communication is when in a HETEROGENEOUS environment, which represents the
transition phase towards automated vehicle uptake (as automated vehicles are, at present, more expensive
than ‘traditional’ vehicles) and performed a stability analysis to identify potential parameter values. We
identified that effects could be seen in the global system from systems with 5% autonomous vehicles.
This model is computationally simulated in Python and, along with stability analysis, shows that the
addition of autonomous vehicles has the ability to reduce, and often eliminate, traffic waves when in a
heterogeneous environment. The effects of additional obstacles, such as traffic lights and speed limits
are also investigated. We observe the effects of these obstacles on the heterogeneous system’s stability.
The simulation is available as an open-source program that can be adapted to analyse other connected
vehicle systems.

Introduction
As autonomous vehicles are introduced into the global vehicle system, they
will have an effect on the traffic flow. Various reports predict different rates of
autonomous vehicle uptake. In (1) predictions range from 20 - 70% uptake by
2050. Even the lower bound of 20% is a significant proportion and will have a
noticeable effect on the global system. Design parameters of the autonomous
and human vehicles can be changed in the manufacturing process. This paper
investigates what we suggest these parameters should be set to, during and
after the introduction of autonomous vehicles.

The behaviour of the global system is also seen to change when various
non-linearities are introduced. For example, a heterogeneous system may act
differently where the speed limit is higher, and the length of track is lower. The
non-linearities we considered are: Speed limits (including VARIABLE SPEED

LIMITS (VSL)), traffic lights, reaction time, acceleration saturation and the
average headway (h∗). We investigate how these impact the traffic flow and
safety of the system, comparing various systems with different proportions of
autonomous and human vehicles.

Governing Equations
The governing equations for both autonomous (Equation 1) and human-driven
vehicles (Equation 2) can be given as:

where i = ia:

v̇i = f(α(V (hσ
i )− vσi ) +

ki∑
j=1

βj(v
σ
i+j − vσi )) (1)

where i = ih:

v̇i = f(αh(V (hτ
i )− vτi ) + βh(v

τ
i+1 − vτi )) (2)

The input for the governing equation is h, standing for headway, which is
defined as the distance from the front of the vehicle to the back of the next
vehicle. The governing equations model a system where vehicles are on a ring
road, such as in the case shown in Figure 1, where there are 3 vehicles.

Figure 1: The governing equations model the interactions of vehicles on a
ring road (2).

V (h) is the OPTIMAL VELOCITY (OV) function, a curve representing the
optimal velocity that is smooth at both hgo and hstop and is plotted in Figure 2:
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Figure 2: The optimal velocity (OV) function used in this paper, where hstop =
5 metres, hgo = 100 metres and vmax = 30 m/s.

We propose that to understand the governing equations intuitively, it is
beneficial to break it into two parts, the VELOCITY ERROR and the VELOCITY

DELTA.
The velocity error is given by the following:

α(V (hθ
i )− vθi )

V (h) refers to the OV function, which gives the velocity the vehicle would
ideally go at given the headway to the next vehicle (disregarding any delays or
capabilities). The optimal velocity function used is from (2), which is based on
real-world data. The methods used to collect the real-world data are explained
in (3).

From this, we can see that the velocity error gives the difference between
the ideal velocity and the velocity that the given vehicle i is going at now.

α (or αh in the case of a human vehicle) has been described as a ‘sensitivity’
by Bando et al. in (4). This refers to the rate at which the vehicle will adjust to
the OV, and is found by the reciprocal of the time it takes to adjust to the new
velocity.
The velocity delta is given by the following:

where i = ia:
ki∑
j=1

βj(v
σ
i+j − vσi )

The velocity delta part of the governing equation takes the sum of the differ-
ences in velocity between the autonomous vehicle i and all the human vehicles

in front of it, which are indexed as i + j. Note that we do not look beyond
the next autonomous vehicle. These are multiplied by the control parameter
βj. This parameter is directly related to the velocity delta and refers to the
rate at which vehicle i will adjust to the sum of differences in velocity to the
vehicles in front of itself. As the autonomous vehicle takes into account the
velocities of all vehicles up to the next autonomous vehicle, this cascade of
vehicles move smoothly as a group in the context of the entire system.

where i = ih:
βh(v

τ
i+1 − vτi )

We assume that human drivers only react to the velocity of the vehicle ahead
of themselves, due to the vehicle in front blocking the line of sight between
the driver and the vehicles further ahead. Thus a summation is not used for the
instance where the driver is human.

Simulation
To make a simulation in Python of this model, we needed to slightly alter the
equations to include time using Euler’s method. We included a TIMESTEP

(δt). The vehicles calculate their accelerations every δt. This number is set at a
small value (0.02s in this simulation) which balances computational intensity
and accuracy.

We were able to change parameters used within the governing equation
(such as αh and βh), observing the effects they had on the stability of the
system. The ring road model allowed the simulation of larger-scale dynamics
(such as traffic waves) with the use of fewer vehicles. We also varied other
parameters of the system, including the track length, number of vehicles, re-
action times, acceleration saturation, and maximum velocity of each of the
vehicles individually.

The scenario explored was 3 vehicles (two human, one autonomous) on a
circular ring road, as in Figure 1 and as done in (2). In this case, the vehicles
are further than hgo apart from one another, and therefore accelerate maximally,
reaching their maximum velocity vmax without interfering with the velocities
of any adjacent vehicles. Figure 3 plots the velocities of these three vehicles
over time, showing that they stabilise at vmax within 20 seconds, with minimal
oscillations of velocity.
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Figure 3: Three vehicles (one autonomous) on an arbitrarily long track. Here
the vehicles are spaced apart enough to not affect the other vehicles’ velocities.
(Parameters: α = 2, αh = 0.4, β = 0.2 and βh = 0.2)

Note that in the magnified section of Figure 3, it can be seen that the human
vehicles accelerate too much, speeding to above their vmax , before decelerat-
ing back to vmax . This is due to their larger reaction time in comparison to
autonomous vehicles. Conversely, it can be seen that autonomous vehicles
do not over-accelerate and smoothly reach the maximum velocity. This is
important when traffic waves are considered, since the over/under acceleration
of human-driven vehicles causes small velocity changes to amplify and create
traffic waves, whereas this does not occur with autonomous vehicles.
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Figure 4: The formation of a traffic wave with 20 equally-spaced human-
driven vehicles on a track of length 650 metres.

Replacing one of the human-driven vehicles with an autonomous vehicle
reduces the amplitude of the traffic waves, as shown in Figure 5.
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Figure 5: The replacement of one human vehicle with an autonomous vehicle
eliminates the traffic wave shown in Figure 4.

The addition of one autonomous vehicle to the system of 20 human-driven
vehicles allowed the amplifying effects of humans over-accelerating to be
reduced. When the traffic wave reaches the autonomous vehicle, it smoothly
accelerates, breaking the feedback loop. If the amplitude decrease by this effect
is larger than the increase in amplitude by the compounding over-acceleration,
the traffic wave can be eventually eliminated. This example suggests that even
if there are only 5% of automatic vehicles in the system, traffic waves can po-
tentially be mitigated. According to (1), this could be achieved optimistically
by 2030 and pessimistically by 2040 in some countries.

Stability Analysis
Utilising the simulation we are able to make some estimates on the stability of
non-linear systems by observing changes in the model made when parameters
are changed. Key parameters include αh, βh, track length L, the number of ve-
hicles N, cascade length and α. There are significant limitations to this method
as only some key situations were analysed, but this nonetheless allowed us to
observe and make some conclusions about the effects of a heterogeneous CVS
in a non-linear system. The first heatmap represents a homogeneous system of
human vehicles, while the second represents a system with 25% autonomous
vehicles.
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Figure 6: Discrete stability analysis performed on scenarios with varying pa-
rameters, showing how the percentage of autonomous vehicles present affects
the stability of the system (when varying parameters).

A higher αh of 0.4 - 0.5 allows the system to stabilise with a high percent-
age of autonomous vehicles, but for all other systems this system is unstable.
When we observed the results, we found that the higher αh causes more over-
accelerations to happen in a shorter period, creating more traffic waves in
systems with no or low percentage of autonomous vehicles. Conversely, in a
system with a high percentage of autonomous vehicles, the higher αh allows
the autonomous vehicles to quickly dampen the traffic waves and achieve
stability in the system. Note that with a too few autonomous cars, the attempt
of autonomous cars to mitigate the traffic wave could sometimes result in more
crashes when αh was too low.

A higher βh has a noticeably large effect on the stability of the system in
heterogeneous systems. The higher βh allows oscillations within each cascade
to be dampened which results in significantly more stable systems. In (3),
the realistic value of βh was found to be 0.4 - 0.6. This works well with
heterogeneous systems according to our model.
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Figure 7: Discrete stability analysis performed on scenarios where cascade
length and α are varied.

It is observed, in Figure 7, that low values of α result in the most stable
connected vehicle systems. However, a lower α does not necessarily create
a safer connected vehicle system. A lower α results in the velocity delta
contributing more to the velocity of the vehicles which compounds quickly
in a large cascade. This can create issues in a global system where other
non-linearities that cause a deceleration of one of the vehicles in the cascade
can affect the acceleration of the autonomous vehicle an unreasonable distance
away. This is a limitation of the fundamental governing equations, and we
believe the velocity delta should be adjusted in future reports to facilitate this.

Where the cascade length is large, high values of α result in crashes due to
the limitations of the velocity delta as discussed. Lower α values still result
in more stable systems than homogeneous systems, where the autonomous
vehicles can move smoothly to dampen the traffic waves (shown by Figure
5). We hypothesise that the stability of the system is governed by an inversely
proportional relationship between the cascade length and α.

Heterogeneous systems are shown to be ineffective when cascade length
≥ 10 and α is high. For large cascades, low values for α cause the connected
vehicle system to be stable. Therefore, it is proposed that, during the initial
phases of deployment of autonomous vehicles (when cascade lengths will be
very high), the value of α should be set low (0.1 - 0.4).

Conclusion
In this paper, various CAVs were investigated. We found that autonomous
vehicles can effectively dampen and eliminate traffic waves from as little as 5%
of the system, given the correct parameter values. We used a discrete stability
analysis to identify crucial parameters for various CAVs. We propose that
CAVs with a cascade length of over 10 are relatively low impact but will have
an improvement on the global system. For these CAVs, the α value should be
set sufficiently low to overcome limitations in the velocity delta that is defined
by the governing equations. We identified cascade lengths of 2 - 4 to be most
robustly stable and suggest α values of approximately 0.8 - 1. We hypothesise
that the ideal α value is inversely proportional to the cascade length. A high
βh is highly effective in CAVs with approximately 25% autonomous vehicles,
as this helps the human vehicles within a cascade to effectively dampen the
traffic waves. We also observed that in systems with a low percentage (around
10%) of autonomous vehicles, more crashes may occur when the α value is
too high and hstop < h∗ < hgo. It has been shown that autonomous vehicles
have a far greater effect in reducing the effects of traffic waves than existing
traffic-mitigation methods, such as variable speed limits.
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